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ABSTRACT

Simulated annealing (SA), while being successful as a
general optimization technique applicable to many model-
ing and design problems of microwave devices and circuits,
is very time consuming. To alleviate this problem, we pro-
pose the creation of a hardware-implemented SA accelera-
tor. The design and evaluation of this SA accelerator, as
well as its application to the microwave CAD area, are pre-
sented. This accelerator features a highly parallel pipeline
structure with a programmable characteristic function. Ac-
ceptance prediction is used to further improve the perfor-
mance. It is evident from simulation results that this
accelerator has a significant (several orders of magnitude)
speed advantage over an ordinary software implementation.

INTRODUCTION

Simulated annealing (SA), a probabilistic hill-climbing
optimization algorithm [1], has been successfully applied to
many modeling and design problems of microwave devices
and circuits [2-7]. Due to the fact that the SA optimization
technique is relatively independent of initial conditions and
excellent results have been observed, it has aroused much
interest. However, since SA is basically an iterative im-
provement method, it generally takes a long computational
time to converge to a near-optimal solution. Comparing SA
to other traditional optimization methods, its slow cooling
requirement, which gives SA a leading edge in escaping
from being trapped into a local minimum, also contributes
to its time consuming feature.

In this paper, we will present our efforts in developing a
hardware accelerator for simulated annealing. Parallel
simulated annealing has been proposed elsewhere [8]; how-
ever, the emphasis was on the placement of VLSI building
blocks which, as we will explain, has a quite different set of
requirements when considered as an optimization problem.
No attempt was made to design and build an SA hardware
accelerator for microwave CAD problems.
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Before the details of the design and implementation of
this SA accelerator are presented, we will first briefly review
the optimization method of simulated annealing and its
application to microwave CAD problems.

SIMULATED ANNEALING

When an optimization method is used, the modeling and
design processes of microwave devices and circuits can be
treated in a common framework [5]. Both these processes
try to determine the values of some model elements so that
the result model is characteristically equivalent to a set of
given data. The only difference lies in the source of these
data -- measured data in a modeling case and required
specifications in a design case. Based on this observation,
we will use the modeling problem as a representative case in
the following description.

The success of a modeling process depends on the ca-
pability of the optimization method which is used to fit the
simulated circuit characteristics to measurements. Thcoret-
ically, the best solution of an optimization problem exists
under a certain well defined objective function and can be
guaranteed only by generating and evaluating all possible
solutions. However, the size of the solution space (i.e., all
the possible solutions) is extremely large and it grows expo-
nentially with the number of variables in the problem. It is
generally impossible to perform an exhaustive search to lo-
cate the best solution in a reasonable time.

A typical optimization process utilizes an iterative im-
provement strategy. First, an initial set of estimated pa-
rameters is generated as the starting point of a search pro-
cess, then small variations are made to these parameters at
each step to generate a new set of parameters, which is

evaluated according to the objective function to be mini-
mized. In order to guarantee the convergence of an opti-
mization process, traditional algorithms are greedy and ac-
cept only those changes that can improve the cost of the
objective function. One inherent drawback of this type of
search is that it can be ecasily trapped into the local minima
of an objective function if good initial values are not avail-
able.
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An approach called simulated annealing (SA) has been
proposed and applied as a method to find a near optimal
solution for combinational optimization problems [1]. SA
associates the statistical mechanics, which deals with the be-
havior of systems with many degrees of freedom in thermal
equilibrium at a finite temperature, with the combinational
optirnization problem, which finds the minimum of a given
function depending on many parameters. In an optimiza-
tion process, the perturbations of parameters to minimize
an objective function is analogous to the displacements of
atoms to minimize the energy in an annealing process. The
excellent analogy between both processes suggested the
application of an annealing process to an optimization
problem, and hence the name simulated annealing. In or-
der to apply the concept and mechanism of annealing to the
optimization problem, a control parameter pseudo-tem-
perature has to be artificially introduced in a simulated an-
nealing process to simulate the temperature which governs
the Boltzman distribution.

An SA optimization process proceeds in a way similar to
the traditional iterative improvement methods except that a
pseudo-temperature control parameter is set to be a large
number at the beginning of the process and its is artificially
decreased very slowly during the process. The success of an
SA process lies in the fact that it conditionally accepts some
error-increasing intermediate solutions to allow the explo-
ration of the solution space in directions which temporarily
worsen the objective function, in the hope of eventually es-
caping from local minima and finding a global minimum.

This technique has received much attention in real world
design problems. The SA method has been applied to a va-
riety of microwave CAD applications including device
modeling [2, 7], device model simplification {3, 4], and cir-
cuit design [5, 6].

PARALLEL SIMULATED ANNEALING

Although simulated annealing is an excellent tool for
CAD applications, its effectiveness is unfortunately re-
stricted by its lengthy computational time. Hours of com-
puter time discourages most, it not all, users.

There are generally two approaches to improve the
computational speed of an algorithm: parallel processing
and direct hardware implementation. Parallel processing
speeds up a process by using multiple processors to perform
tasks concurrently while a direct hardware implementation
achieves the same goal by removing the overheads typically
implied by a general-purpose computer. Both approaches
are combined and applied in this implementation.

The original SA algorithm, in its current form being
applied to microwave CAD problems, has to be modified
before it is suitable for direct hardware implementation.
Some parts of the algorithm, especially its objective function
(ie., the least squares error between measured and calcu-

lated characteristics), has to be modified for the purpose of
flexibility. Unlike the original SA application to a building
block placement problem which has a general objective
function, microwave CAD problems require different mod-
els with different characteristic functions to be used, which
are determined according to their model topologies. There
is virtually no difficulty in changing a characteristic function
in a software program. However, this flexibility that is
commonly enjoyed in a software program no longer exists in
a hardware implementation. In order for the resulting ac-
celerator to be universally applicable, its characteristic
function must be programmable.

We have decided to implement the most time consum-
ing part of an SA process, i.e., its iterative improvement
loop, into a parallel pipeline structure in this programmable
hardware accelerator. The less time consuming tasks and
control functions are retained in a software implementation.
Figure 1 shows the relationship between software and
hardware in this accelerator.
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Figure 1 The software-hardware relationship of the
proposed SA accelerator.

As mentioned, the original SA algorithm needs to be
modified in order to be implemented effectively. The first
problem to be solved is that different modeling problems
have their own characteristic functions. It is not economical
to design a hardware accelerator customized for only one
modeling problem. The characteristic function of this ac-
celerator is designed to be universal so that it can be pro-
grammed to suit most, if not all, modeling problems. One
format of this programmable characteristic function is given
below:

F(X a0X0+...+a7X7+j(a8X8+...+a15X15) 1

( )\_ a16X16+...+a23X23+j(aZ4X24+...+a31X31) ( )
where F(X) is the characteristic (e.g., measured S-parame-
ters) to be modeled, X = [Xg, Xy, ..., X31] is a set of inde-

pendent variables (e.g., w, w2, ...) and the coefficients, a;'s,

represent the model parameters to be determined. An ex-
ample of using equation (1) is given here to illustrate its us-
age. The following characteristic function

F(X) = juC +

1
R + joL
can be transformed into
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«?LC + jwRC _ a0Xg + jagXg
R+jul a16Xy6 + janaXoa,
The parameters can then be specified as Xg = w2, Xg = «,

F(X) =

X16 =1, X24 =w, ap = -LC, ag = RC, ajg = R, and Ay =
L. The values of individual model parameters can then be
found readily once aj's have been determined.

SA continuously modifies the coefficients a;'s to gener-

ate new solutions for evaluation. A new solution is retained
or discarded, depending upon whether the following Boltz-
man-like distribution function

P(AE, T) = e k*AET > R, 2
where P is the probability of accepting a cost-increasing so-
lution, AE is the cost increment between the current and
previous solutions, k is a weighting factor, T is the pseudo-
temperature, and R is a random (real) number generated
between 0 and 1, is satisfied.

Since the solution used as a starting point at a certain
step in the SA is determined by the acceptance of a previous
proposed intermediate solution, the accelerator cannot
process a new solution until its ancestor has been fully
evaluated. This is very not economical since many clock
cycles will be wasted. In order to fully utilize a pipeline
structure, the accelerator processes intermediate solutions
by means of prediction.

The objective here is to predict whether equation (2)
will be satisfied by a solution before it is evaluated. Based
on this prediction, the system can then continue to process
new solutions by assuming whether the old or modified so-
lution should be used for further steps. In this implementa-
tion, the assumption depends on the statistics of recent re-
sults. If most of the recent changes were accepted (e.g., at
an early stage when the pseudo-temperature is relatively
high), then the solution still under evaluation is assumed to
satisfy equation (2). The old one is used otherwise (e.g., at a
final stage when the pseudo-temperature is relatively low).

The prediction cannot, of course, always be right and an
adjustment may become necessary. In order to recover
from an incorrect assumption, the local memories of the ac-
celerator (see Figure 1) store the previously processed data
and parameters until they are no longer needed. Whenever
a prediction is proved to be incorrect, the pipeline has to be
flushed and brought back to the point where the incorrect
assumption was made. The system then recovers itself by
copying back the stored information and restarts the
pipeline.

The operation of this accelerator is distributed among
three parallel pipelines, as shown in Figure 2.

Pipeline P1 generates two random numbers and uses
them to decide which coefficient a; should be changed and
its amount of change. Queues are used in this pipeline to
store these newly generated parameters until their related
costs and thus their acceptance have been evaluated using
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equation (2). This is done for the preparation of flushing
the pipelines which may become necessary in the future.

Initialization

Pl v P2 v P3 Vv
Random # Retrieve Randomly
Generation F(x) choose a
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\ and its
Boltzman Determine amount of
Distribution new F(X) change
Calculate Store new
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Figure 2 The parallel pipelines in the accelerator.

Based on the information provided by P1, a second
pipeline, P2, calculates the characteristic of a newly gener-
ated solution and generates the least squares error {LSE)
between the calculated and measured characteristics. This
pipeline consists of many floating point arithmetic calcula-
tions and is responsible for a major part of calculations in
the optimization process. In order to speed up the process,
the following rearrangement of the cost function is per-
formed:

B a0X0+...+a7X7+j(38X8+...+a15X15) B f0+jf1

- a16X16+...+aZ3X23+j(a24X24+...+a31X31) - f2+jf3.
Instead of completely recalculating F every time an a; is
changed, memories are provided for storing individual f;'s (j

= 0 to 3) and only the one that is involved with the selected
a; is recalculated by
fi(new) = fj(old) + G * X,

where C; is the amount of change applied to a;. This
rearrangement allows a big time saving by replacing a large
pumber of floating point operations with a single
multiplication and an addition. The LSE is then calculated.

The last pipeline P3 deals with the decision part of an
SA process. This pipeline evaluates the acceptance condi-
tion, checks the results delivered by P2 and generates a
"flush" signal if necessary. Two major tasks of this pipeline
are to gradually lower the pseudo-temperature and to check
the acceptance of new solutions. The pseudo-temperature
is lowered by multiplying its current value by a factor o (0 <
a < 1). The checking operation specified in eq. (2) is
rearranged to further reduce the time spent in this pipeline.

P3 receives the E(new) (LSE) from P2 and checks if the
solution should be accepted according to eq. (2). Since AE
= E(new) - E(old) (i.e,, the difference between LSE's), Eq.



(2) can be rewritten into

E(new) < Ejp,, = E(old) % * In(R). 3)

Epax can be interpreted as the maximum value for an ac-

ceptable new solution generated from an old one with
E(old). The R. H. S. of eq. (3) can be calculated in parallel
with the computation of E(new) which is performed in P2.
We have simulated and verified this accelerator using
VHDL (VHSIC Hardware Description Language), an
IEEE standard hardware description language. Comparing
the performance of this hardware SA accelerator with a
typical software implementation, several orders of magni-
tude of improvement in the computational speed has been
observed. To give an idea of the significance of this speed-
up factor, the modeling of a spiral inductor to be used in mi-
crowave applications is carried out in both a Sun 3/50
workstation (a software SA implementation) and our hard-
ware accelerator under simulation, it was found that the
computation time has been reduced from about 10 minutes
(CPU time, the actual elapsed time is much longer) to less

than 1 second. The result of this modeling is shown in
Figure 3.
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Figure 3 The modeling result of a spiral inductor.
SUMMARY

In this paper, we have proposed and described the de-
sign of a hardware SA accelerator and its application to mi-
crowave CAD modeling and design problems. The original
SA process has been modified to suit a hardware implemen-
tation. This accelerator includes a parallel pipeline struc-
ture with a programmable characteristic function. A predic-
tion of solution acceptance is used to further improve the
accelerator performance. Simulation results have indicated
that several orders of magnitude in speed improvement can
be readily available.
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