
ACCELERATION OF SIMULATED ANNEALING AND ITS
APPLICATION TO MICROWAVE DEVICE AND CIRCUIT OPTIMIZATION

A4an-Kuan Vai, Jer-Sheng Li~ and Sheila Prasad

Department of Electrical and Computer Engineering

Northeastern University

Boston, MA 02115

ABSTRACT

Simulated annealing (SA), while being successful as a

general optimization technique applicable to many model-

ing and design problems of microwave devices and circuits,

is very time consuming. To alleviate this problem, we pro-

pose the creation of a hardware-implemented SA accelera-

tor. The design and evaluation of this SA accelerator, as

well as its application to the microwave CAD area, are pre-

sented. This accelerator features a highly parallel pipeline

structure with a programmable characteristic function. Ac-

ceptance prediction is used to further improve the perfor-

mance. It is evident from simulation results that this

accelerator has a significant (several orders of magnitude)

speed advantage over an ordinary software implementation.

INTRODUCTION

Simulated annealing (SA), a probabilistic hill-climbing

optimization algorithm [1], has been successfully applied to

many modeling and design problems of microwave devices

and circuits [2-7]. Due to the fact that the SA optimization

technique is relatively independent of initial conditions and

excellent results have been observed, it has aroused much

interest. However, since SA is basically an iterative im-

provement method, it generally takes a long computational

time to converge to a near-optimal solution. Comparing SA

to other traditional optimization methods, its slow cooling

requirement, which gives SA a leading edge in escaping

from being trapped into a local minimum, also contributes

to its time consuming feature.

In this paper, we will present our efforts in developing a

hardware accelerator for simulated annealing. Parallel

simulated annealing has been proposed elsewhere [8]; how-

ever, the emphasis was on the placement of VLSI building

blocks which, as we will explain, has a quite different set of

requirements when considered as an optimization problem.

No attempt was made to design and build an SA hardware

accelerator for microwave CAD problems.

Before the details of the design and implementation of

this SA accelerator are presented, we will first briefly review

the optimization method of simulated annealing and its

application to microwave CAD problems.

SIMULATED ANNEALING

When an optimization method is used, the modeling and

design processes of microwave devices and circuits can be

treated in a common framework [5]. Both these processes

try to determine the values of some model elements so that

the result model is characteristically equivalent to a set of

given data. The only difference lies in the source of these

data -- measured data in a modeling case and required

specifications in a design case. Based on this observation,

we will use the modeling problem as a representative case in

the following description.

The success of a modeling process depends on the ca-

pability of the optimization method which is used to fit the

simulated circuit characteristics to measurements. Th~oret-

ically, the best solution of an optimization problem exists

under a certain well defined objective function and can be

guaranteed only by generating and evaluating all possible

solutions. However, the size of the solution space (i.e., all

the possible solutions) is extremely large and it grows expo-

nentially with the number of variables in the problem. It is

generally impossible to perform an exhaustive search to lo-

cate the best solution in a reasonable time.

A typical optimization process utilizes an iterative im-

provement strategy. First, an initial set of estimated pa-

rameters is generated as the starting point of a search pro-

cess, then small variations are made to these parameters at

each step to generate a new set of parameters, which is

evaluated according to the objective function to be mini-

mized. In order to guarantee the convergence of an opti-

mization process, traditional algorithms are greedy and ac-

cept only those changes that can improve the cost of the

objective function. One inherent drawback of this type of

search k that h can be easily trapped into the local minima

of an objective function if good initial values are not avail-

able.

1213

CH2870-4/91/0000- 1213$01 .0001991 IEEE 1991 IEEE MTT-S Digest

An approach called simulated annealing (SA) has been

proposed and applied as a method to find a near optimal

solution for combinational optimization problems [1]. SA

associates the statistical mechanics, which deals with the be-

havior of systems with many degrees of freedom in thermal

equilibrium at a finite temperature, with the combinational

optimization problem, which finds the minimum of a given

function depending on many parameters. In an optimiza-

tion process, the perturbations of parameters to minimize

an objective function is analogous to the displacements of

atoms to minimize the energy in an annealing process. The

excellent analogy between both processes suggested the

application of an annealing process to an optimization

problem, and hence the name simulated annealing. In or-

der to apply the concept and mechanism of annealing to the

optirnization problem, a control parameter pseudo-tem-

perature has to be artificially introduced in a simulated an-

nealing process to simulate the temperature which governs

the Eloltzman distribution.

An SA optimization process proceeds in a way similar to

the traditional iterative improvement methods except that a

pseudo-temperature control parameter is set to be a large

number at the beginning of the process and its is artificially

decreased very slowly during the process. The success of an

SA process lies in the fact that it conditionally accepts some

error-increasing intermediate solutions to allow the explo-

ration of the solution space in directions which temporarily

worsen the objective function, in the hope of eventually es-

caping from local minima and finding a global minimum.

This technique has received much attention in real world

design problems. The SA method has been applied to a va-

riety of microwave CAD applications including device

modeling [2, 7], device model simplification [3, 4], and cir-

cuit design [5, 6].

PARALLEL SIMULATED ANNEALING

Although simulated annealing is an excellent tool for

CAD applications, its effectiveness is unfortunately re-

stricted by its lengthy computational time. Hours of com-

puter time discourages most, it not all, users.

There are generally two approaches to improve the

computational speed of an algorithm: parallel processing

and direct hardware implementation, Parallel processing

speeds up a process by using multiple processors to perform

tasks concurrently while a direct hardware implementation

achieves the same goal by removing the overheads typically

implied by a general-purpose computer. Both approaches

are combined and applied in this implementation.

The original SA algorithm, in its current form being

applied to microwave CAD problems, has to be modified

before it is suitable for direct hardware implementation.

Some parts of the algorithm, especially its objective function

(i.e., the least squares error between measured and calcu-

lated characteristics), has to be modified for the purpose of

flexibility. Unlike the original SA application to a building

block placement problem which has a general. objective

function, microwave CAD problems require different mod-

els with different characteristic functions to be used, which

are determined according to their model topologies. There

is virtually no difficulty in changing a characteristic function

in a software program. However, this flexibility that is

commonly enjoyed in a software program no longer exists in

a hardware implementation. In order for the resulting ac-

celerator to be universally applicable, its characteristic

function must be programmable.

We have decided to implement the most time consum-

ing part of an SA process, i.e., its iterative improvement

loop, into a parallel pipeline structure in this programmable

hardware accelerator. The less time consuming tasks and

control functions are retained in a software implementation.

Figure 1 shows the relationship between software and

hardware in this accelerator,

.
Hardware Accelerator

Simulated Annealing Local ‘

Algorithm - Memories 1

AJ

Signals Parameters
, I

Figure 1 The software-hardware relationship of the

proposed SA accelerator.

As mentioned, the original SA algorithm needs to be

modified in order to be implemented effectively. The first

problem to be solved is that different modeling problems

have their own characteristic functions. It is not economical

to design a hardware accelerator customized for only one

modeling problem. The characteristic function of this ac-

celerator is designed to be universal so that it can be pro-

grammed to suit most, if not all, modeling problems. One

format of this programmable characteristic function is given

below:

ao~+... +a7X7+j(agXg+... +alSXIS)
(1)

‘(x) = a16X16+... +a23Xm+j(a24X24+.. .+a31X31)

where F(X) is the characteristic (e.g., measured S-parame-

ters) to be modeled, X = [~, X1, X31] is a set of inde-

pendent variables (e.g., a, U2, ...) and the coefficients, ai’s,

represent the model parameters to be determined. An ex-

ample of using equation (1) is given here to illustrate its us-

age. The following characteristic function

F(X) = jtiC + ~ +ljuL

can be transformed into

1214

.U2LC + juRc aoxo+ j@8
F(x) = R + jwL

= a16x16 + ja24x24.

The parameters can then be specified as X0 = Q2, X8 = c+

X16 = !, X24 = co, ao = -LC, ag = RC, a16 = R, and azo =

L. The values of individual model parameters can then be

found readily once a:s have been determined.

SA continuously modifies the coefficients a{s to gener-

ate new solutions for evaluation, A new solution is retained

or discarded, depending upon whether the following Boltz-

man-like distribution function

P(AE, T) = e-k* AE~ > R, (2)

where P is the probability of accepting a cost-increasing so-

lution, AE is the cost increment between the current and

previous solutions, k is a weighting factor, T is the pseudo-

temperature, and R is a random (real) number generated

between O and 1, is satisfied.

Since the solution used as a starting point at a certain

step in the SA is determined by the acceptance of a previous

proposed intermediate solution, the accelerator cannot

process a new solution until its ancestor has been fully

evaluated. This is very not economical since many clock

cycles will be wasted. In order to fully utilize a pipeline

structure, the accelerator processes intermediate solutions

by means of prediction.

The objective here is to predict whether equation (2)

will be satisfied by a solution before it is evaluated. Based

on this prediction, the system can then continue to process

new solutions by assuming whether the old or modified so-

lution should be used for further steps. In this implementa-

tion, the assumption depends on the statistics of recent re-

sults. If most of the recent changes were accepted (e.g., at

an early stage when the pseudo-temperature is relatively

high), then the solution still under evaluation is assumed to

satisfy equation (2). The old one is used otherwise (e.g., at a

final stage when the pseudo-temperature is relatively low).

The prediction cannot, of course, always be right and an

adjustment may become necessary. In order to recover

from an incorrect assumption, the local memories of the ac-

celerator (see Figure 1) store the previously processed data

and parameters until they are no longer needed. Whenever

a prediction is proved to be incorrect, the pipeline has to be

flushed and brought back to the point where the incorrect

assumption was made. The system then recovers itself by

copying back the stored information and restarts the

pipeline.

The operation of this accelerator is distributed among

three parallel pipelines, as shown in Figure 2.

Pipeline PI generates two random numbers and uses

them to decide which coefficient ai should be changed and

its amount of change. Queues are used in this pipeline to

store these newly generated parameters until their related

costs and thus their acceptance have been evaluated using

equation (2). This is done for the preparation of flushing

the pipelines which may become necessary in the future.

Initialization
1

@@

+ +

Check
Calculate

+
LSE

:

P3

Randomly

choose a

parameter

and its

amount of

change

H
“Flush”

Figure 2 The parallel pipelines in the accelerator.

Based on the information provided by PI, a second

pipeline, P2, calculates the characteristic of a newly gener-

ated solution and generates the least squares error (LSE)

between the calculated and measured characteristics. This

pipeline consists of many floating point arithmetic calcula-

tions and is responsible for a major part of calculations in

the optimization process. In order to speed up the process,

the following rearrangement of the cost function is per-

formed:

aoxo+...+@+j(@&3+... +alsxls) fo+jfl
F=

a@16+... +a2’jX23+j(a24X24 +... +a’jlXsl) = -

Instead of completely recalculating F every time an ai is

changed, memories are provided for storing individual fj’s (j

= O to 3) and only the one that is involved with the selected

ai is recalculated by

fj(new) = fj(old) + ~ * Xi,

where Ci is the amount of change applied to ak This

rearrangement allows a big time saving by replacing a large

number of floating point operations with a single

multiplication and an addition. The LSE is then calculated.

The last pipeline P3 deals with the decision part of an

SA process. This pipeline evaluates the acceptance condi-

tion, checks the results delivered by P2 and generates a

“flush” signal if necessary. Two major tasks of this pipeline

are to gradually lower the pseudo-temperature and to check

the acceptance of new solutions. The pseudo-temperature

is lowered by multiplying its current value by a factor a (O ●:

a < 1). The checking operation specified in eq. (2) is

rearranged to further reduce the time spent in this pipeline.

P3 receives the E(new) (LSE) from P2 and checks if the

solution should be accepted according to eq. (2). Since AIE

= E(new) - E(old) (i.e., the difference between LSE’S), Eq.

1215

(2) can be rewritten into

E(new) < Emm = E(old) - ~ * in(R). (3)

Emu can be interpreted as the maximum value for an ac.

ceptable new solution generated from an old one with

E(old). The R. H. S. of eq. (3) can be calculated in parallel

with the computation of E(new) which is performed in P2.

We have simulated and verified this accelerator using

VHDL (VHSIC Hardware Description Language), an

IEEE standard hardware description language. Comparing

the performance of this hardware SA accelerator with a

typical software implementation, several orders of magni-

tude of improvement in the computational speed has been

observed. To give an idea of the significance of this speed-

up factor, the modeling of a spiral inductor to be used in mi-

crowave applications is carried out in both a Sun 3150

workstation (a software SA implementation) and our hard-

ware accelerator under simulation, it was found that the

computation time has been reduced from about 10 minutes

(CPU time, the actual elapsed time is much longer) to less

than 1 second. The result of this modeling is shown in

Figure 3.

.+
4 0.20 --
WI

–.20

imaginary Part

–.60 -
0.0 4.0 8.0 12.0 16.0

Frequency (MHz)

Figure 3 The modeling result of a spiral inductor.

SUMMARY

In this paper, we have proposed and described the de-

sign of a hardware SA accelerator and its application to mi-

crowave CAD modeling and design problems. The original

SA process has been modified to suit a hardware implemen-

tation. This accelerator includes a parallel pipeline struc-

ture with a programmable characteristic function. A predic-

tion of solution acceptance is used to further improve the

accelerator performance. Simulation results have indicated

that several orders of magnitude in speed improvement can

be readily available.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi,

“Optimization by Simulated Annealing,” Science, vol.

220, pp. 671-680,1983.

M.-K. Vai, S. Prasad, N. C. Li and F. Kai, “Modeling of

Microwave Semiconductor Devices Using Simulated

Annealing Optimization,” IEEE Trans. Electron

Devices, vol. 36, pp. 761-762,1989.

M.-K. Vai and D. Ng, “A Technology-Independent

Device Modeling Program Using Simulated Annealing

Optimization,” Proc. of IEEE Custom Ingetrated

Circuits Conference, pp. 9,4.1-9.4.4, 1989.

M.-K. Vai, D. Ng and s. Prasad, “Model Minimization

for Electron Devices Using Simulated Annealing in

Conjunction with Parameter Extraction;’ IEE

Electronics Letters, vol. 26, No. 13, pp. 892-894,1990.

M.-K. Vai and S. Prasad, “Computer-Aided Design of

MESFET Distributed Amplifier:’ IEEE Trans. on

Microwave Theory and Techniques, vol. MTT-38, pp.

345-349,1990.

M.-K. Vai, S. Prasad and B. Meskoob, “Computer-

Aided Design of Monolithic Distributed Amplifiers

with Yield Optimization,” IEEE M’IT-S International

Microwave Symposium Digest, pp. 347-350,1990.

G. L. Bilbro, M. B. Steer, R. J, Trew, C.-R, Chang and

S. G. Skaggs, “Extraction of the Parameters of

Equivalent Circuits of Microwave Transistors Using

Tree Annealing;’ IEEE Trans. on Microwave Theory

and Techniques, vol. MTT-38, pp. 1711-1718, 1990.

M. D. Durand, “Parallel Simulated Annealing

Accuracy vs. Speed in Placement,” IEEE Design &

Test of Computers, vol. 6, no. 3, pp. 8-34, June 1989.

1216

